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Abstract

ATLAS[1] has recently joined Gaudi, an open project to develop a data processing
framework for HEP experiments[2]. The data model is one of the areas where ATLAS has
extended more the original Gaudi design to meet the experiment’s own requirements. This
paper describes StoreGate, the first implementation of the ATLAS Data Model.
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1 Introduction

The Gaudi software architecture belongs to the blackboard family[3]: data objects produced
by knowledge modules (called Algorithms in Gaudi) are posted to a common “in-memory data
base” from where other modules can access them and produce new data objects.

This model greatly reduces the coupling between knowledge modules containing the
algorithmic code for analysis and reconstruction, in that one knowledge module does not need
anymore to know which specific module can produce the information it needs nor which protocol
it must use to obtain it (the ”interface explosion” problem described in component software
systems). Algorithmic code is known to be the least stable component of software systems and
the blackboard approach has been very effective at reducing the impact of this instability, from
the Zebra system of the FORTRAN days to the Java InfoBus architecture.

The Transient Data Store (TDS) is the blackboard of the Gaudi architecture: a module
creates a data object and post it to the TDS to allow other modules to access it1.

Once an object is posted on to the store, the TDS takes ownership of it and manages
its lifetime according to preset policies, removing, for example, a TrackCollection when a new
event is read. The TDS also manages the conversion of a data object from/to its persistent
form and provides therefore an API to access data stored on persistent media.

2 StoreGate Design and Functionality

StoreGate (SG), in common with most other existing data models, is basically a dictionary of
data objects which manages their memory and oversees conversion to/from persistency. The SG
design process has been informal and iterative. We released early and often and used developers
feedback to adjust our initial design concept2. The result may lack the coherency of a formal
top-down design but it follows a few principles which have proved to be useful.

Work with User Types

The success of the STL and of other public domain template libraries means that it has become
vital to design an open system that can work with generic types that export an interface, in
particular the STL containers, rather than forcing data objects to import a common interface.

1to be precise the current TDS implements only a “passive” blackboard, since modules do not react to TDS
events (e.g. executing after a data object is registered into the TDS)

2which was in any case largely based on ideas which have worked in existing data models



SG adapts its behavior to the functionality each data object exports. The only SG-imposed
constraint on a data object3 is to be an STL Assignable type[4].

Avoid User-defined Keys

The disadvantage of the data/knowledge objects separation is the need for knowledge objects to
identify data objects to be posted on or retrieved from the blackboard. It is crucial to develop a
data model optimized for the required access patterns and yet flexible enough to accommodate
the unexpected ones.

SG addresses this problem with a two-step approach: it defines a natural identifier mech-
anism for data objects and it transparently associates to each data object a default value of this
identifier allowing developers to register and retrieve data objects without having to identify
them explicitly.

The first component of the identifier is the data object type. Experience shows that
HEP developers tend to group the objects they work on into collections. As a result the TDS
will often contain a single instance of a data object type (say a TrackCollection or several
closely related ones (e.g. a TrackCollection for each component of the Inner Detector). The SG
retrieve interface covers these two use cases
DataHandle<TrackCollection> theTrackColl; //STL forward_iterator
sg->retrieve(theTrackColl); //get the (default) TrackCollection
DataHandle<TrackCollection> beginTrackColls, endTrackColls;
sg->retrieve(beginTrackColls, endTrackColls); //get all TrackColls

Type-based identification is not always sufficient. For example the TDS may contain
several equivalent instances of a TrackCollection produced by alternative tracking algorithms.
Therefore we need to add a second component to our identification mechanism: the identifier
of the Algorithm instance that produced the data object we want4. In the spirit of working
with user types, the SG will allow developers to augment this history identifier with a generic
key type optimized for their access patterns.

Control Object Access and Creation

The TDS is the main channel of communication among modules. A data object is often the
result of a collaboration among several modules. SG allows a module to use transparently a
data object created by an upstream module or read from disk.

A Virtual Proxy[5] defines and hides the cache-fault mechanism: upon request5, a missing
data object instance can be transparently created and added to the TDS, presumably retrieving
it from a persistent data-base or, in principle, even reconstructing it on demand.

To ensure reproducibility of data processing, a data object should not be modified after
it has been published to the store, we use the same proxy scheme to enforce an “almost const”
access policy: modules downstream of the publisher are only allowed to retrieve a constant
iterator to the published object.

Support Inter-object Relationships

SG supports uni-directional inter-objects relationships, or links, and will support bi-directional
links in the future. A link is a persistable pointer. If the linked object is a data object then the
proxy scheme described above is also used to implement the link. But typically links will refer

3this does not mean that the data model, simulation and reconstruction groups should not issue design guide-
lines to ensure that ATLAS data objects behave consistently in terms of memory management and persistability

4notice that we need to identify the instance rather than the class. In an often quoted use case, clients may
want to distinguish among tracks reconstructed by the same tracking algorithm using different jet cone sizes.

5Currently the proxy uses lazy instantiation (i.e. the object is created only when the handle is dereferenced).



to objects that are not data objects but are contained within a data object. The SG knows
how to get to the container and the container knows how to return an element given its index.
The job of the link is to find out the value of the index, persistify it and, later on, pass it on
to the container and get back the linked object. In the next section we will discuss how links
handle indices into generic containers.

3 Implementation Techniques

A big advantage that SG has compared to earlier data models implementations is that many
compilers are catching up with the ISO/ANSI C++ standard. Because of that, a new gen-
eration of template libraries like boost[6] and loki[7] are bringing once-esoteric techniques like
template meta-programming into the mainstream. Template meta-programming uses the com-
piler template expansion to control and generate running code based on static type information.
In SG we have used some of its simpler techniques.

Type Traits and Traits Types

The TDS memory management back-end manages the data objects as instances of a DataObject
base class. Each class derived from DataObject has a unique ClassID. This allows, for example,
to use an Abstract Factory[5] to create data object instances when reading from disk. SG wraps
each stored data object into a templated DataObject
template <typename DOBJ> class DataBucket : public DataObject {...}

If DOBJ does not inherit from DataObject we want the developer to define a ClassID for
DOBJ that we will associate to the data object.

To determine, at compile time, if DOBJ inherits from DataObject we use the boost type
trait boost::is convertible<DOBJ,DataObject>, a template that evaluates to true when
DOBJ can be assigned as a DataObject[6, 7].

To associate the ClassID information to a data object type, say vector<double>, we
define a ClassID traits structure that developers specialize for that data object (the struct
is actually generated using a cpp macro)
template <> struct ClassID_traits<vector<double> > {

typedef type_tools::true_tag has_classID_tag;
static const int ID = 1234;
....

};

Concept Checking

SG allows developers to use generic key types to identify objects of a given type. A key must of
course define an ordering operation. For SG we also require keys to be persistable. In traditional
OO programming these requirements would be expressed as an interface the key class imports.
In generic programming interfaces are rather exported and hence verified by the clients. To
this end, SG provides a KeyConcept built using the boost concept check library
template <typename T, .... > struct KeyConcept {
void constraints() {
boost::function_requires< boost::LessThanComparableConcept<T> >();
....

}
};

Inserting a call to boost::function requires<KeyConcept<KEY> > () we allow the
compiler to check whether the template parameter KEY of a retrieve or register method is valid.



Policy Classes

SG handle and link classes use policy classes to configure their behavior at compile time. A
policy[7] is a statically configured Strategy[5]. It can also be seen as a traits class that defines
behavior rather than structure. Policies become powerful tools when they are combined: the
compiler picks the right combinations and generates the code needed by the application. For
example the link class template DataLink is implemented as a combination of two policies
template <typename DOBJ,

class IndexingPolicy=NoIndexing<DOBJ>,
template <class> class DataStoragePolicy=DataHandleStorage>

class DataLink : public DataStoragePolicy<DOBJ>,
public IndexingPolicy { ... }

DataStoragePolicy wraps the TDS back-end API, while IndexingPolicy defines the strategy
the DataLink uses to find a container element given its identifier, and viceversa. We have
defined indexing policy classes that can be used to index elements of all STL containers and
to index nodes of an HepMC graph[8]. Policies are flexible: if a developer introduces a new
container type, all they have to do is to provide a matching indexing policy and the compiler
will generate the new link type as needed.

4 Status and Outlook

After more than one year of evolution the StoreGate design has achieved a certain maturity. A
lot of broad design principles have been established: work with user types, avoid user-defined
keys, define an access control policy. The core data access API has been stable for several
months. Many packages have ported their code to StoreGate or are in the process of doing
so. We are now working on aspects of the implementation and performance that are not yet
production quality.

In the spirit of the Gaudi open project we have started discussing our work with the
Gaudi community and we hope the StoreGate ideas and code will be useful to developers inside
and outside ATLAS.
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